Composition Identities of Chebyshev Polynomials, via 2 × 2 Matrix Powers
نویسندگان
چکیده
منابع مشابه
2 00 2 Restricted Permutations and Chebyshev Polynomials
We study generating functions for the number of permutations in S n subject to two restrictions. One of the restrictions belongs to S 3 , while the other belongs to S k. It turns out that in a large variety of cases the answer can be expressed via Chebyshev polynomials of the second kind.
متن کاملPowers of a Matrix and Combinatorial Identities
In this article we obtain a general polynomial identity in k variables, where k ≥ 2 is an arbitrary positive integer. We use this identity to give a closed-form expression for the entries of the powers of a k × k matrix. Finally, we use these results to derive various combinatorial identities.
متن کاملFast methods for resumming matrix polynomials and Chebyshev matrix polynomials
Fast and effective algorithms are discussed for resumming matrix polynomials and Chebyshev matrix polynomials. These algorithms lead to a significant speed-up in computer time by reducing the number of matrix multiplications required to roughly twice the square root of the degree of the polynomial. A few numerical tests are presented, showing that evaluation of matrix functions via polynomial e...
متن کاملIdentities of the Chebyshev Polynomials, the Inverse of a Triangular Matrix, and Identities of the Catalan Numbers
In the paper, the authors establish two identities to express the generating function of the Chebyshev polynomials of the second kind and its higher order derivatives in terms of the generating function and its derivatives each other, deduce an explicit formula and an identities for the Chebyshev polynomials of the second kind, derive the inverse of an integer, unit, and lower triangular matrix...
متن کاملThe Chebyshev Polynomials of a Matrix
A Chebyshev polynomial of a square matrix A is a monic polynomial p of specified degree that minimizes ‖p(A)‖2. The study of such polynomials is motivated by the analysis of Krylov subspace iterations in numerical linear algebra. An algorithm is presented for computing these polynomials based on reduction to a semidefinite program which is then solved by a primaldual interior point method. Exam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2020
ISSN: 2073-8994
DOI: 10.3390/sym12050746